If √3−1√3+1=a+b√3, then the values of ′a′ and ′b′ are _________.
a=2,b=1
a=2,b=−1
a=−2,b=1
a=4,b=−1
√3−1√3+1=a+b√3
√3−1√3+1×√3−1√3−1=a+b√3
(√3−1)2(√3)2−(1)2=a+b√3
(√3)2−2√3+(1)23−1=a+b√3
3−2√3+12=a+b√3
4−2√32=a+b√3
/2(2−√3/2)=a+b√3
Hence, a=2 and b=−1.
√3−1√3+1=a−b√3 then the values of a and b are