If x4(x−a)(x−b)(x−c)
=p(x)+Ax−a+Bx−b+Cx−cthenp(x)=
Carefully observing LHS and RHS we can
say that P(x) has to be a linear
equation, so let P(x)=mx+n
x4(x−a)(x−b)(x−c)=(mx+n)+A(x−a)+B(x−b)+c(x−c)
x4(x−a)(x−b)(x−c)=(mx+n)(x−a)(x−b)(x−c)+A(x−b)(x−c)
+B(x−a)(x−c)+C(x−a)(x−b)(x−a)(x−b)(x−c)
Comparing cofficients of x4,x3,x2,x in both sides
1=m= (1)
0=−am−bm−cm+n
⇒0=−a−b−c+n
⇒a+b+c=n− (2)
∴P(x)=mx+n
=x+(a+b+c)
∴ Answer option (D)