The correct option is A 3xyzabc
Let xa=yb=zc=k
Then, x=ak,y=bk,z=ck
LHS: x3a3+y3b3+z3c3
=(ak)3a3+(bk)3b3+(ck)3c3
=3k3
Consider the RHS of the options, all of them have xyzabc in common.
So, (xa)(yb)(zc)
= k.k.k=k3
LHS = k3, so we need to multiply 3 to (xa)(yb)(zc) to get 3k3
∴ x3a3+y3b3+z3c3=3×(xyzabc)
Option B, RHS = 3(xyzabc)=3k3=LHS