If z−1z+1 is purely imaginary number (z≠−1), find the value of |z|.
Let z = x + iy,
z−1z+1=x+iy−1x+iy+1=x−1+iyx+1+iy=(x−1+iy)(x+1−iy)(x+1+iy)(x+1−iy) [Rationalizing the denominator]=(x−1+iy)(x+1−iy)(x+1)2−(iy)2=x2+x−ixy−x−1+iy+ixy+iy+y2x2+2x+1+y2=x2−1+21y+y2x2+2x+1+y2=x2+y2−1x2+2x+1+y2+i2yx2+2x+1+y2
∵ It is purely imaginary number
∴ real part = 0
=x2+y2−1x2+2x+1+y2=0=x2+y2−1=0=x2+y2=1=√x2+y2=1|z|=1