The correct option is D 27ay2=2(x−2a)3
Equation of parabola y2=4ax
Equation of normal is
y=mx−2am−am3
Let the normal drawn through P(h,k)
∴k=mh−2am−am3
For three distinct normals it has three real roots as
m1,m2,m3
For normal to intersect with x−axis, y=0
mx−2am−am3=0⇒x=2a+am2
Hence values of x for m1,m2,m3 are in A.P.
∴2a+am21+2a+am23=2(2a+am22)⇒m21+m23=2m22⋯(1)
But m1+m2+m3=0 and
m1m2+m2m3+m1m3=2a−ha⇒m1m3−m22=2a−ha⋯(2)
And
m1+m3=−m2⇒m21+m23+2m1m3=m22
Using equation (1), we get
⇒2m1m3+m22=0⋯(3)
Using equations (2) and (3), we get
m22=−2(2a−h)3a,m1m3=2a−h3a
Also,
m1m2m3=−ka∴−2(2a−h)3a⋅(2a−h)29a2=k2a2
Hence locus is
27ay2=−2(2a−x)3∴ 27ay2=2(x−2a)3