If function be f(x)={x2−1x−1 when x≠1k when x=1 is continuous at x=1, then the value of k is?
If a function f(x) is continuous at x=a then
limx→a+f(x)=limx→a−f(x)=f(a)
Given: f(x)={x2−1x−1 when x≠1k when x=1
limx→1+f(x)=x2−1x−1
⇒limx→1+f(x)=(x+1)(x−1)x−1
⇒limx→1+f(x)=x+1
⇒limx→1+f(x)=1+1
⇒limx→1+f(x)=2---(1)
limx→1−f(x)=x2−1x−1
⇒limx→1−f(x)=(x+1)(x−1)x−1
⇒limx→1−f(x)=x+1
⇒limx→1−f(x)=1+1
⇒limx→1−f(x)=2---(2)
f(1)=k---(3)
It is given that, f(x) is continuous at x=a.
limx→1+f(x)=limx→1−f(x)=f(1)
⇒f(1)=limx→1+f(x)
⇒k=2
Hence, Option C is correct.