If f(x)=1x2+a2+x2+b2, then f'(x) is equal to
xa2-b21x2+a2-1x2+b2
xa2+b21x2+a2-2x2+b2
xa2-b21x2+a2+1x2+b2
a2+b21x2+a2-1x2+b2
Step1: Given a function
f(x)=1x2+a2+x2+b2
Step 2: Multiplying numerator and denominator by, x2+a2-x2+b2
∴f(x)=x2+a2-x2+b2x2+a2-x2+b2=x2+a2-x2+b2x2+a2-x2-b2=x2+a2-x2+b2a2-b2=1a2-b2x2+a2-x2+b2Now,usingddxu=12ududx=1a2-b22x2x2+a2-2x2(x2+b2)=xa2-b21x2+a2-1x2+b2
Hence, the correct option is an option (A).