wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fx=1-sin xπ-2x2.log sin xlog1+π2-4πx+4x2,xπ2 k ,x=π2
is continuous at x = π/2, then k =
(a) -116

(b) -132

(c) -164

(d) -128

Open in App
Solution

c -164

If fx is continuous at x=π2, then
limxπ2fx=fπ2If π2-x=t, thenlimt0 fπ2-t=fπ2limt01-sin π2-t4t2×log sin π2-tlog1+π2-4ππ2-t+4π2-t2=klimt01-cos t4t2×log cos tlog1+π2-2π2+4πt+4π24+t2-πt=klimt01-cos t4t2×log cos tlog1-π2+4πt+π2+4t2-4πt=klimt01-cos t4t2×log cos tlog 1+4t2=klimt02 sin2 t216×t24×log cos tlog 1+4t2=k216limt0sin2 t2t24×log cos t4t2 log 1+4t24t2=k18limt0sin2 t2t22×log cos t4t2log 1+4t24t2=k18limt0sin2 t2t22×log 1-sin2 t4t2log1+4t24t2=k18limt0sin2t2t22×log1-sin2t8t2log1+4t24t2=k164limt0sin2t2t22×log1-sin2tt2log1+4t24t2=k164lim t0sint2t22×limt0log1-sin2tt2limt0log1+4t24t2=k1641×limt0-sin2t log 1-sin2tt2-sin2t=k-164limt0sin2t log 1-sin2tt2-sin2t=k-164limt0sintt2limt0log 1-sin2t-sin2t=k-164limt0sintt2limt0log1-sin2t-sin2t=k k=-164 lim x0log1-xx=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon