The given function can be rewritten as fx=2x2+k, if x≥0-2x2+k, if x<0 We have (LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0-2-h2+k=k (RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→02h2+k=k If fx is continuous at x=0, then
limx→0-fx =limx→0+fx = f0⇒limx→0-fx =limx→0+fx = k ∴ k can be any real number.