wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fx=a sinπ2x+1,x0tan x-sin xx3,x>0is continuous at x = 0, then a equals
(a) 12

(b) 13

(c) 14

(d) 16

Open in App
Solution

(a) 12


Given: fx=a sin π2x+1 , x0tan x-sin xx3 , x>0
We have

(LHL at x = 0) = limx0-fx=limh0f0-h=limh0f-h=limh0a sin π2-h+1=a sin π2=a

(RHL at x = 0) = limx0+fx=limh0f0+h=limh0fh=limh0tan h-sin hh3

=limh0sin hcos h-sin hh3=limh0sin hcos h1-cos hh3=limh01-cos h tan hh3=limh02 sin2 h2 tan h4×h24×h=24limh0sin2 h2 tan hh24×h=12limh0sin h2h22×limh0tanhh=12×1×1=12

If fx is continuous at x=0, thenlimx0-fx=limx0+fxa=12


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon