(a) 12 Given: fx=a sin π2x+1 , x≤0tan x-sin xx3 , x>0 We have (LHL at x = 0) = limx→0-fx=limh→0f0-h=limh→0f-h=limh→0a sin π2-h+1=a sin π2=a (RHL at x = 0) = limx→0+fx=limh→0f0+h=limh→0fh=limh→0tan h-sin hh3 =limh→0sin hcos h-sin hh3=limh→0sin hcos h1-cos hh3=limh→01-cos h tan hh3=limh→02 sin2 h2 tan h4×h24×h=24limh→0sin2 h2 tan hh24×h=12limh→0sin h2h22×limh→0tanhh=12×1×1=12 If fx is continuous at x=0, thenlimx→0-fx=limx→0+fx⇒a=12