3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiation Using Substitution
If f x=asin x...
Question
If
f
x
=
a
sin
x
+
b
e
x
+
c
x
3
and if f (x) is differentiable at x = 0, then
(a)
a
=
b
=
c
=
0
(b)
a
=
0
,
b
=
0
;
c
∈
R
(c)
b
=
c
=
0
,
a
∈
R
(d)
c
=
0
,
a
=
0
,
b
∈
R
Open in App
Solution
(b)
a
=
0
,
b
=
0
;
c
∈
R
We
have
,
f
x
=
a
sin
x
+
b
e
x
+
c
x
3
=
a
sin
x
+
b
e
x
+
c
x
3
0
<
x
<
π
2
-
a
sin
x
+
b
e
-
x
-
c
x
3
-
π
2
<
x
<
0
Here
,
f
x
is
differentiable
at
x
=
0
Therefore
,
LHD
at
x
=
0
=
RHD
at
x
=
0
⇒
lim
x
→
0
-
f
x
-
f
0
x
-
0
=
lim
x
→
0
+
f
x
-
f
0
x
-
0
⇒
lim
x
→
0
-
-
a
sin
x
+
b
e
-
x
-
c
x
3
-
b
x
=
lim
x
→
0
+
a
sin
x
+
b
e
x
+
c
x
3
-
b
x
⇒
lim
h
→
0
-
a
sin
0
-
h
+
b
e
-
0
-
h
-
c
0
-
h
3
-
b
0
-
h
=
lim
h
→
0
a
sin
0
+
h
+
b
e
0
+
h
+
c
0
+
h
3
-
b
0
+
h
⇒
lim
h
→
0
a
sin
h
+
b
e
h
+
c
h
3
-
b
-
h
=
lim
h
→
0
a
sin
h
+
b
e
h
+
c
h
3
-
b
h
⇒
lim
h
→
0
a
cos
h
+
b
e
h
+
3
c
h
2
-
1
=
lim
h
→
0
a
cos
h
+
b
e
h
+
3
c
h
2
1
By
L
'
Hospital
rule
⇒
-
a
+
b
=
a
+
b
⇒
-
2
a
+
b
=
0
⇒
a
+
b
=
0
This
is
true
for
all
value
of
c
∴
c
∈
R
In
the
given
options
,
option
b
satisfies
a
+
b
=
0
and
c
∈
R
Suggest Corrections
0
Similar questions
Q.
If the diagram in Fig. 2.22 shows the graph of the polynomial f(x) = ax
2
+ bx + c, then
(a) a > 0, b < 0 and c > 0
(b) a < 0, b < 0 and c < 0
(c) a < 0, b > 0 and c > 0
(d) a < 0, b > 0 and c < 0