If f(x)=cos2x+sec2x, then
f(x)<1
1<f(x)<2
f(x)greater than or equal to 2
f(x)=1
Explanation for the correct option:
Use the concept of AM-GM
The arithmetic means (AM) is greater than equal to the geometric mean (GM).
∴AM≥GM
⇒cos2x+sec2x2≥cos2xsec2x⇒cos2x+sec2x2≥cos2x1cos2x∵secθ=1cosθ⇒cos2x+sec2x2≥1
⇒cos2x+sec2x2×2≥1×2⇒cos2x+sec2x≥2⇒f(x)≥2
Hence, the correct option is (C).
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: