wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If fx=cosxcos2xcos4xcos8xcos16x, then f'π4 is equal to


A

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

12

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

0

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

32

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

0


Explanation for the correct option.

Step 1. Simplify the given function.

The value of the function fx=cosxcos2xcos4xcos8xcos16x for x=π4 is given as:

fπ4=cosπ4cos2×π4cos4×π4cos8×π4cos16×π4=cosπ4cosπ2cosπcos2πcos4π=12×0×-1×1×1=0

Now, in the function fx=cosxcos2xcos4xcos8xcos16x take logarithm of both sides.

logfx=logcosxcos2xcos4xcos8xcos16xlogfx=logcosx+logcos2x+logcos4x+logcos8x+logcos16x

Step 2. Find the value of f'π4.

Differentiate both sides of the function logfx=logcosx+logcos2x+logcos4x+logcos8x+logcos16x.

ddxlogfx=ddxlogcosx+logcos2x+logcos4x+logcos8x+logcos16x1f(x)f'x=1cosx-sinx+1cos2x-sin2x+1cos4x-sin4x+1cos8x-sin8x+1cos16x-sin16xf'x=fx-tanx-tan2x-tan4x-tan8x-tan16x

Now, the value of f'π4 is given as:

f'π4=fπ4-tanπ4-tan2×π4-tan4×π4-tan8×π4-tan16×π4=0×-tanπ4-tan2×π4-tan4×π4-tan8×π4-tan16×π4[fπ4=0]=0

Hence, the correct option is C.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon