If fx=x+1, then find limn→∞1nf0+f5n+f10n+...+f5n-1n
72
32
52
12
Explanation for the correct option.
Find the limit of the given expression.
The limit limn→∞1nf0+f5n+f10n+...+f5n-1n can be written as:
limn→∞1nf0+f5n+f10n+...+f5n-1n=limn→∞1n∑r=0n-1f5rn
And thus its limit is given as:
limn→∞1n∑r=0n-1f5rn=∫01f5xdx=∫015x+1dx[fx=x+1]=5x22+x01=5×122+1-0-0=52+1=72
Hence, the correct option is A.
if f:(1,∞)–(2,∞) is given by f(x)= x+(1/x) then find f inverse