If f'(x)=g(x) and g'(x)=–f(x)for all x andf(2)=4=f'(2), then f2(4)+g2(4) is equal to
8
16
32
64
Explanation for the correct option:
Find the value of f2(4)+g2(4):
Given that,
f'(x)=g(x)
g'(x)=–f(x)
Let us consider r(x)=f2(x)+g2(x)
Differentiating r(x) with respect to x we get,
r'(x)=2f(x)f'(x)+2g(x)g'(x)=2f(x)g(x)+2g(x)(-f(x))=0
Since, r'x=0
r(x)=constant⇒r(4)=r(2)r(2)=f2(2)+f'2(2)=22+22=8
r2=r4=8
Hence, the correct option is A.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2