If fx=x1+x and gx=ffx then g'xis equal to
12x+32
1x+12
1x2
12x+12
Explanation for the correct option:
Finding the value of g'x:
Given that,
fx=x1+x,
Now,
gx=ffx=fx1+x=x1+x1+x1+x=x1+x2x+11+x=x2x+1
Now, differentiate gx with respect to x,
g'x=2x+11-x22x+12[∵ddxuv=vu'-uv'v2]=2x+1-2x2x+12=12x+12
Hence, the correct option is D.