Given: fx=x22, if 0≤x≤12x2-3x+32, if 1<x≤2 We have (LHL at x = 1) = limx→1-fx=limh→0f1-h=limh→01-h22=12 (RHL at x = 1) = limx→1+fx=limh→0f1+h=limh→021+h2-31+h+32=2-3+32=12 Also, f1=122=12 ∴ limx→1-fx =lim x→1+fx =f1 Hence, the given function is continuous at x=1.