If fx+y=fx·y and ∑x=1∞fx=2. x,y∈ℕ, where ℕ is the set of all natural numbers, then the value of f4f2 is
23
19
13
49
Explanation for the correct option:
It is given that fx+y=fx·y.
The given equation, ∑x=1∞fx=2.
⇒f1+f2+f3+.......∞=2⇒f1+f1+1+f1+2+.......∞=2⇒f1+f1·f1+f1·f2+.......∞=2[∵fx+y=fx·y]⇒f1+f1f1+f2+.......∞=2⇒f1+f1×2=2[∵f1+f2+f3+.......∞=2]⇒3f1=2⇒f1=23
Thus, f4f2=f2+2f2
⇒f4f2=f2·f2f2∵fx+y=fx·y⇒f4f2=f2⇒f4f2=f1+1⇒f4f2=f1·f1⇒f4f2=23·23⇒f4f2=49
Therefore, the value of f4f2 is 49.
Hence, (D) is the correct option.
If fx+y=fxfy and ∑x=1∞fx=2x,y∈N, where N is the set of all natural number, then the value of f4f2 is: