If g:[2:2]→R where g(x)=x3+tanx+[x2+1p] is a odd function then the value of parametric P is
g(x)=x3+tanx+x2+1p
g(−x)=(−x)3+tan(−x)+(−x)2+1p
g(−x)=−x3−tanx+x2+1p
g(x)+g(−x)=0 because g(x) is a odd function
∴[x3+tanx+x2+1p]+[−x3−tanx+x2+1p]=0
⇒2(x2+1)p=0
⇒0≤x2+1p<1 because x∈[−2,2]
⇒0≤5p<1⇒p>5.