If g:[2:2]→R where g(x)=x3+tanx+[x2+1p] is a odd function then the value of parametric P is where [.] denotes the Greatest integer function.
g(x)=x3+tanx+[x2+1p]
g(−x)=(−x)3+tan(−x)+[(−x)2+1p]
g(−x)=−x3−tanx+[x2+1p]
g(x)+g(−x)=0 because g(x) is a odd function
∴x3+tanx+[x2+1p]−x3−tanx+[x2+1p]=0
⇒2[(x2+1)p]=0
⇒0≤x2+1p<1 because x∈[−2,2]
⇒0≤5p<1⇒p>5.