wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If G be the centroid of a triangle ABC and O be any other point, prove that
3(GA2+GB2+GC2)=BC2+CA2+AB2
and OA2+OB2+OC2=GA2+GB2+GC2

Open in App
Solution

Let G be the centroid of a triangle ABC.
Let D,E,F are midpoints of sides BC,CA and AB respectively.
By archimedian principle
AB2+AC2=2[(12BC)2+AD2]

AB2+CA2=2[BC24+(32AG)2][Giscentroid;AG:GD=2:1;AG=23AD]

AB2+CA2=BC22+92AG21

ly BC2+BA2=2[(12AC)2+BE2]

BC2+BA2=AC22+92BG22[BG:GE=2:1]

ly CA2+BC2=2[(12AB)2+CF2]

CA2+BC2=AB22+92CG23[CG:GF=2:1]

1+2+32[AB2+BC2+CA2]=12[AB2+BC2+CA2]+92[AG2+BG2+CG2]

AB2+BC2+CA2=3[AG2+BG2+CG2]
Hence Proved.

710415_640776_ans_cfdaa3a6a9c24d688f72db9dd9ab56be.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Bulls Eye View of Geometry
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon