Let G be the centroid of a triangle ABC.
Let D,E,F are midpoints of sides BC,CA and AB respectively.
By archimedian principle
AB2+AC2=2[(12BC)2+AD2]
⇒AB2+CA2=2[BC24+(32AG)2][∵Giscentroid;AG:GD=2:1;⇒AG=23AD]
⇒AB2+CA2=BC22+92AG2⟶1
∥ly BC2+BA2=2[(12AC)2+BE2]
⇒BC2+BA2=AC22+92BG2⟶2[∵BG:GE=2:1]
∥ly CA2+BC2=2[(12AB)2+CF2]
⇒CA2+BC2=AB22+92CG2⟶3[∵CG:GF=2:1]
1+2+3⇒2[AB2+BC2+CA2]=12[AB2+BC2+CA2]+92[AG2+BG2+CG2]
AB2+BC2+CA2=3[AG2+BG2+CG2]
Hence Proved.