wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If G be the centroid of a triangle ABC and P be any other point in the plane, prove that PA2+PB2+PC2=GA2+GB2+GC2+3GP2.

Open in App
Solution

Now, L.H.S(xa)2+(yb)2+(xc)2+(yd)2+(x+a+c)2+(y+b+d)2=(x22ax+a2)+(y22by+b2)+(x22cx+c2)+(y22dy+y2)+(x2+a2+c2+2ax+2ac+2cx)+(y2+b2+d2+2by+2bd+2dy)=3(x2+y2)+2(a2+b2+c2+d2ab+cd)Now, R.H.S[(0a)2+(0b)2]+[(0c)2+(0d)2]+[(0+a+c)2+(0+b+d)2]+3[(x0)2+(y0)2]=a2+b2+c2+d2+(a2+2ac+c2)+(b+d2+2bd)+3(x2+y2)=3(x2+y2)+2(a2+b2+c2+d2+ac+ba)=L.H.S
Thus, PA2+PB2+PC2=GA2+GB2+GC2+3GP2


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Centroid
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon