LetA(x1,y1),B(x2,y2)andC(x3,y3)betheverticesof△ABC.Withoutthelawofgenerality,assumethecentroidofthe
△ABCtobeatorigin,i.e.,G=(0,0).
Centroidof△ABC=[x1+x2+x33,y1+y2+y33]
∴x1+x2+x3=0;y1+y2+y3=0
Squaringonbothsides,
x12+x22+x32+2x1.x2+2x2.x3+2x3.x1=0
y12+y22+y32+2y1.y2+2y2.y3+2y3.y1=0−(i)
AB2+BC2+CA2
=[(x2−x1)2+(y2−y1)2]+[(x3−x2)2+(y3−y2)2]+[(x1−x3)2+(y1−y3)2]
=(x12+x22−2x1x2+y12+y22−2y1y2)+(x12+x32−2x1x3+y12+y32−2y2y3)
+(x12+x32−2x1x3+y12+y32−2y1y3)
=(2x12+2x22+2x32−2x1x2−2x2x3−2x1x3)+
(2y12+2y22+2y32−y1y2−2y2y3−2y1y3)
=(3x12+3x22+3x32)+(3y12+3y22+3y32)
=3(x12+x22+x32)+3(y12+y22+y32)−(ii)
3(GA2+GB2+GC2)
=3[(x1−0)2+(y1−0)2+(x2−0)2+(y2−0)2+(x3−0)2+(y3−0)2]
=3[x12+y12+x22+y22+x32+y32]
=3(x12+x22+x32)+3(y12+y22+y32)−(iii)
from(ii)&(iii)
AB2+BC2+CA2=3(GA2+GB2+GC2)