If g is inverse of f and f(x)=x2+3x−3(x>0) then g′(1) equals
Given, f(x)=x2+3x−3
f−1(x)=g(x)
⇒x=f(g(x))
Differentiating both sides,
1=f′(g(x))g′(x)
⇒g′(x)=1f′(g(x))
Now f′(x)=2x+3
And f(1)=1⇒g′(1)=1f′(g(1))=1f′(1)=15
If f and g are two functions over real numbers defined as f(x) = 3x + 1, g(x) = x2 + 2, then find f-g