Let A(x1,y1)B(x2,y2) and C(x3,y3) be vertices of ΔABC
Assume that centroid of ΔABC to be at the origin
i.e; G = (0,0)
centroid of ΔABC=(x1+x2+x33,y1+y2+y33)
∴x1+x2+x33=0 and y1+y2+y33=0
so x1+x2+x3=0 & y1+y2+y3=0
squaring on both sides we get
x21+x22+x23+2x1x2+2x2x3+2x3x1=0 and
y21+y22+y23+2y1y2+2y2y3+2y3y1=0⋯(1)
AB2+BC2+CA2=[(x2−x1)2+(y2−y1)2]+[(x3−x2)2+(y3−y2)2]+[(x1−x3)2+(y1−y3)2]
=[x21+x22−2x1x2+y21+y22−2y1y2]+[x23+x22−2x3x2+y22+y23−2y2y3]+[x21+x23−2x1x3+y21+y23−2y1y3]
=[2x21+2x22+2x23−2x1x2−2x2x3−2x1x3]+[2y21+2y22+2y23−2y1y2−2y2y3−2y1y3]
=(3x21+3x22+3x23)+(3y21+3y22+3y23)
=3(x21+x22+x23)+3(y21+y22+y23)⋯(2)
3(GA2+GB2+GC2)=3[(x1−0)2+(y1−0)2+(x2−0)2+(y2−0)2+(x3−0)2+(y3−0)2]
=3[x21+y21+x22+y22+x23+y23]
=3(x21+x22+x23)+3(y21+y22+y23)⋯(3)
from (2) and (3) we get
AB2+BC2+CA2=3(GA2+GB2+GC2)