wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If G is the centroid of any ABC then find the value of AB2+BC2+CA2AG2+BG2+CG2.

Open in App
Solution

Let A(x1,y1)B(x2,y2) and C(x3,y3) be vertices of ΔABC
Assume that centroid of ΔABC to be at the origin
i.e; G = (0,0)
centroid of ΔABC=(x1+x2+x33,y1+y2+y33)
x1+x2+x33=0 and y1+y2+y33=0
so x1+x2+x3=0 & y1+y2+y3=0
squaring on both sides we get
x21+x22+x23+2x1x2+2x2x3+2x3x1=0 and
y21+y22+y23+2y1y2+2y2y3+2y3y1=0(1)
AB2+BC2+CA2=[(x2x1)2+(y2y1)2]+[(x3x2)2+(y3y2)2]+[(x1x3)2+(y1y3)2]
=[x21+x222x1x2+y21+y222y1y2]+[x23+x222x3x2+y22+y232y2y3]+[x21+x232x1x3+y21+y232y1y3]
=[2x21+2x22+2x232x1x22x2x32x1x3]+[2y21+2y22+2y232y1y22y2y32y1y3]
=(3x21+3x22+3x23)+(3y21+3y22+3y23)
=3(x21+x22+x23)+3(y21+y22+y23)(2)
3(GA2+GB2+GC2)=3[(x10)2+(y10)2+(x20)2+(y20)2+(x30)2+(y30)2]
=3[x21+y21+x22+y22+x23+y23]
=3(x21+x22+x23)+3(y21+y22+y23)(3)
from (2) and (3) we get
AB2+BC2+CA2=3(GA2+GB2+GC2)


1210263_1284402_ans_7f094bdb0c044bd2941d228220eafda3.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Centroid
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon