The correct option is C g(x) is differentiable at x=0
g(x)=x∫02|t|dt,
=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩x∫0−2t dt,x<0x∫02t dt,x≥0={[−t2]x0,x<0[t2]x0,x≥0={−x2,x<0x2,x≥0=x|x|
g(x) is continuous.
Now,
g′(x)={−2x,x<02x,x≥0
Clearly, g(x) is differentiable at x=0
Also, g(x) is monotonic.
g′′(x)={−2,x<02,x≥0
So, g′(x) is non-differentiable at x=0