The correct option is A −409
g(x)=ln[f(x)]
⇒f(x)=eg(x)
Also, f(x+1)=xf(x)
⇒eg(x+1)=x⋅eg(x)
⇒eg(x+1)−g(x)=x
⇒g(x+1)−g(x)=lnx
Differentiating w.r.t. x,
⇒g′(x+1)−g′(x)=1x
Again differentiating w.r.t. x,
g′′(x+1)−g′′(x)=−1x2⋯(i)
Put x=12 in (i)
⇒g′′(32)−g′′(12)=−4⋯(ii)
Put x=32 in (i)
⇒g′′(52)−g′′(32)=−49⋯(iii)
Adding (ii) and (iii)
⇒g′′(52)−g′′(12)=−4−49=−409