ydx−xdy(x−y)2=2dx√1−x2
Dividing the numerator and denominator of L.H.S. by x2, we get
yx⋅1x−1x⋅dydx(1−yx)2=2√1−x2
⇒yx−dydx(1−yx)2=2x√1−x2
Let y=vx
⇒dydx=v+xdvdx
∴v−v−xdvdx(1−v)2=2x√1−x2
⇒dv(1−v)2=−2dx√1−x2
Integrating both sides, we get
11−v=−2sin−1x+C
⇒xx−y+2sin−1x=C