The correct option is C c=2 when y=1,x=0
e−x(y+1)dy+(cos2x−sin(2x))ydx=0
⇒e−x(y+1)dy=(sin(2x)−cos2x)ydx
⇒(y+1y)dy=ex(sin2x−cos2x)dx
Integrating both sides, we get
⇒∫(y+1y)dy=∫ex(sin2x−cos2x)dx
⇒∫(y+1y)dy=∫ex(sin2x)dx−∫ex(cos2x)dx ⋯(i)
Let I1=∫ex(cos2x)dx
Using ILATE rule, we get
I1=excos2x+∫ex(sin2x)dx
Putting in (i), we get
y+ln|y|=−excos2x+c
⇒y+ln|y|+excos2x=c
When y=1,x=0⇒c=2