wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If -aax+x-2dx=22 and [x] denotes the greatest integer x, then -aax+xdx is equal to


Open in App
Solution

Step-1: Split the given integral using properties of modulus function

x=x,x>0

x=-x,x<0

x-2=x-2,x>2

x-2=2-x,x<2

Hence, the given integral can be split as

-a0-x+2-xdx+02x+2-xdx+2ax+x-2dx=22 ;[assuming a>2]

Step-2: Solve the integral to calculate the value of a

-a0-2x+2dx+022dx+2a2x-2dx=22

-x2+2x-a0+2x02+x2-2x2a=22

0+0+a2+2a+4-0+a2-2a-4+4=22

2a2=18

a2=9

a=3

Step -3: Substitute the value of a to solve the required integral

The given integral now becomes -33x+xdx

-33x+xdx=-33xdx+-33xdx

=0+-3-2xdx+-2-1xdx+-10xdx+01xdx+12xdx+23xdx ...[-aaf(x)dx=0 for an odd function like f(x)=x]

=-3-2-3dx+-2-1-2dx+-10-1dx+010dx+12dx+232dx ...x=-3x[-3,-2),x=-2x[-2,-1) and so forth

=-3x-3-2+-2x-2-1-x-2-1+x12+x23

=-3-2-1+1+2

-33x+xdx=-3

Hence, the value of the integral -aax+xdx is -3 for the given conditions.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon