The correct option is C Maximum value of P is 3R
Given: H is the orthocentre of ΔABC,R is circumradius
We know, AH=2RcosA,BH=2RcosB,CH=2RcosC
∴P=2R(cosA+cosB+cosC)
Also, we know (cosA+cosB+cosC)=(1+rR)
Hence P=2R(1+rR)=2(R+r)
We know, in a triangle r≤R2
Hence rR≤12
So, maximum value of P=2R(1+12)=3R