If H is the orthocentre of Δ ABC, then AH is equal to
c cot A
b cot A
a cot B
a cot A
From ΔAHB,AHsin(900−A)=csin(A+B)⇒AH=c cosAsin(1800−C)=c cosAsinC=asin Acos A[since asinA=csinC]=acotA
If b+c=3a, then cot B/2 cot C/2 is equal to
If A+B =225∘, (1+cotA)(1+cotB) equal to