If h(x) = min {x,x2} for x ϵ R. Find LHD and RHD at x = 1.
(A) Let plot the graph of f(x) = x and f(x) = x2
Taking min of x2, x we get
LHD ⇒ lim△ → 0−f(x+△x).f(x)△x where f(x)=x2 at x=1
⇒lim△ → 0− f(x+△ x)2−x2△ x=lim△ → 0− 2△x.x+△ x2−x2△ x=lim△ → 0−2x+△ x
RHD △ lim△ → 0+ (x+△ x)−(x)△ x=lim△ → 0+ △ x△ x=1
∴ LHD = 2, RHD = 1