If ^a and ^b are two units vectors inclined at angle α to each other, then
Open in App
Solution
A) If |a+b|<1 then (a+b)⋅(a+b)<1 so |a|2+|b|2+2a⋅b<1⇒a⋅b<−1/2 ⇒cosα<−1/2⇒2π/3<α<π. B) If |a−b|=|a+b| then a⋅b=0⇒α=π/2 C) If |a+b|<√2 then cosθ<0 which is true if π/2<θπ D) If |a+b|<√2 then cosθ>0 which is true if 0≤θ<π/2