If ^a,^b and ^c are unit vectors, and the maximum value of ∣∣2^a−3^b∣∣2+∣∣2^b−3^c∣∣2+|2^c−3^a|2 is p, then the value of [p10] is
(Here, [.] denotes the greatest integer function.)
Open in App
Solution
Given |^a|=|^b|=|^c|=1
Let y=∣∣2^a−3^b∣∣2+∣∣2^b−3^c∣∣2+|2^c−3^a|2 ⇒y=4|^a|2+9|^b|2−12^a⋅^b+4|^b|2+9|^c|2−12^b⋅^c+4|^c|2+9|^a|2−12^a⋅^c ⇒y=3(4+9)−12(^a⋅^b+^b⋅^c+^c⋅^a) ⇒y=39−12(^a⋅^b+^b⋅^c+^c⋅^a)
As |^a+^b+^c|2≥0 ⇒3+2(^a⋅^b+^b⋅^c+^c⋅^a)≥0⇒^a⋅^b+^b⋅^c+^c⋅^a≥−32 ⇒ymax=39+(12)(32) =39+18=57 ∴[p10]=[5710]=5