wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I1=π20f(sin2x)sinxdx and I2=π20f(cos2x)cosxdx, then find I1I2.

Open in App
Solution

I1=π20f(sin2x)sinxdx

=π40f(sin2x)sinxdx+π2π4f(sin2x)sinxdx

Setting x=π4t in the first integral and x=π4+t in the second integral,

I1=π40f(sin(2π42t))sin(π4t)dt+π40f(cos2t)sin(π4+t)dt

=π40f(cos2t)[sin(π4t)+sin(π4+t)]dt

=π40f(cos2t)2sin(π4)costdt

=2π40f(cos2t)costdt

We have, nT0f(x)dx=nT0f(x)dx

I1=22π20f(cos2t)costdt

=12I2

I1I2=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon