If I1=∫10e−xcos2xdx, I2=∫10e−x2cos2xdx
I3=∫10e−x2dx, I4=∫10e−x2dx then
When 0<x<1,
x2<x
⇒ex2<ex
⇒e−x2>e−x
Multiplying both sides by cos2x we get
e−x2cos2x>e−xcos2x
⇒∫10e−x2cos2xdx>∫10e−xcos2xdx
⇒I2>I1
Similarly,
since,0<cos2x<1
since 0<cos2xex2<e−x2⇒I3>I2⇒I3>I2>I1
And
ex22<ex2⇒1ex22>1ex2⇒I4>I3⇒I4>I3>I2>I1