If I1=∫tanxa+btan2xdx=c1ln|f(x)|+c2 I2=∫sin2xacos2x+bsin2xdx, then which of the following (s) is/are correct
A
f(x) is a periodic function with period π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(x) is a periodic function with period π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2I1=I2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
I1=2I2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2I1=I2 I1=∫tanxa+btan2xdx=∫sinxcosxa+b(sinxcosx)2dx=∫sinx.cosxacos2x+bsin2xdx=12∫sin2xdxacos2x+bsin2x⇒I1=12I2⇒2I1=I2
Now, substituting acos2x+bsin2x=y ⇒2(b−a)sinxcosxdx=dy⇒(b−a)sin2xdx=dyI1=12∫1y⋅dy(b−a)=12(b−a)ln|y|+C=12(b−a)ln|acos2x+bsin2x|+C⇒f(x)=acos2x+bsin2x ⇒f(x+π)=acos2(x+π)+bsin2(x+π)=f(x) ⇒ Periodic with period π