If I1=1∫0e−xcos2xdx, I2=1∫0e−x2cos2xdx and I3=1∫0e−x3dx ; then :
A
I3>I2>I1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
I2>I1>I3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
I2>I3>I1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
I3>I1>I2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AI3>I2>I1 As x∈(0,1)
So, x>x2>x3 ⇒−x3<−x2<−x ⇒e−x3>e−x2>e−x ⇒e−x3>cos2xe−x2>cos2xe−x ∵cos2x<1∀x∈(0,1) ⇒1∫0e−x3dx>1∫0e−x2cos2xdx>1∫0e−xcos2xdx ∴I3>I2>I1