If I1=∫sin-1xdxand I2=∫sin-1√(1-x2)dx, then
I1=I2
I2=π2I1
I1+I2=π2x+C
I1+I2=π2+C
None of these
Explanation for correct answer:
Find the relation:
Taking I2 first,
I2=∫sin-1(1–x2)dx=∫cos-1xdx
I1=∫sin-1xdx (Given)
I1+I2=∫sin-1xdx+∫cos-1xdx=∫(sin-1x+cos-1x)dx=π2∫dx[∵sin-1+cos-1x=π2]=π2x+C
Hence, the correct option is C.