If i2=−1, then the sum i+i2+i3+...... upto 1000 terms is equal to
0
i+i2+i3+....i1000i+i2+i3+i4 i1000 [∵ i2=−1,i3=−i, i4=1]=i−1−i+1=0
Similarly, the sum of the next four terms of the series will be equal to 0. This is because the powers of i follow a cyclicity of 4. Hence, the sum of all terms, till 1000, will be zero.
i+i2+i3+.....i1000=0