If (i) A=[cosαsinα−sinαcosα], then verify that A′A=I
(ii) A=[sinαcosα−cosαsinα], then verify that A′A=I
Open in App
Solution
(i) A=[cosαsinα−sinαcosα] ∴A′=[cosαsinαsinαcosα] A′A=[cosα−sinαsinαcosα][cosαsinα−sinαcosα] =[(cosα)(cosα)+(−sinα)(−sinα)(cosα)(sinα)+(−sinα)(cosα)(sinα)(cosα)+(cosα)(−sinα)(sinα)(sinα)+(cosα)(cosα)] =[cos2α+sin2αsinαcosα−sinαcosαsinαcosα−sinαcosαsin2α+cos2α] =[1001]=I Hence, we have verified that A′A=I (ii) A=[sinαcosα−cosαsinα] ∴A′=[sinα−cosαcosαsinα] A′A=[sinα−cosαcosαsinα][sinαcosα−cosαsinα] [sinα−cosαcosαsinα][sinαcosα−cosαsinα] =[(sinα)(sinα)+(−cosα)(−cosα)(sinα)(cosα)−(−cosα)(sinα)(cosα)(cosα)+(sinα)(−cosα)(cosα)(cosα)+(sinα)(sinα)] =[sin2α+cos2αsinαcosα−sinαcosαsinαcosα−sinαcosαcos2α+sin2α] =[1001]=I Hence, we have verified that A′A=I