The correct option is B π/4√2
Let I=∫1(1+x2)√1−x2dx
Substitute x=sint⇒dx=costdt
I=∫1sin2t+1dt
Multiply numerator and denominator by csc2t
I=∫csc2tcsc2t+1dt=∫csc2tcot2t+2dt
Substitute u=cott⇒du=−csc2tdt
I=−∫1u2+2du=−1√2tan−1u√2
=−1√2tan−1cott√2=−1√2tan−1cotsin−1x√2
Therefore
∫1/√301(1+x2)√1−x2dx=π4√2