wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=π0xsin2xsin(π2cosx)(2xπ)dx, then the value of π2I=

Open in App
Solution

Given : I=π0xsin2xsin(π2cosx)(2xπ)dx (i)
Using property
baf(x)dx=baf(a+bx)dx
I=π0(πx)sin2xsin(π2cosx)(π2x)dx (ii)
Adding (i) and (ii):
2I=π0sin2xsin(π2cosx)dx2I=2π/20sin2xsin(π2cosx)dx
[f(πx)=f(x) ]
Substitute π2cosx=t,π2sinxdx=dt
I=8π2π/20tsintdtI=8π2[tcost+sint]π/20I=8π2π2I=8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon