1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Product Rule of Differentiation
If I= ∫0πx2...
Question
If
I
=
∫
π
0
x
2
sin
2
x
cos
4
x
x
2
−
3
π
x
+
3
x
2
d
x
then the value of
32
π
2
I
+
298
is equal
Open in App
Solution
Given :
I
=
∫
π
0
x
3
cos
4
x
sin
2
x
d
x
π
2
−
3
π
x
+
3
x
2
d
x
.
.
.
.
.
.
.
.
.
.
.
(
1
)
∫
a
0
f
(
x
)
d
x
=
∫
a
b
f
(
a
−
x
)
d
x
I
=
∫
π
0
(
π
−
x
)
3
cos
4
(
π
−
x
)
sin
2
(
π
−
x
)
(
π
2
−
3
π
(
π
−
x
)
+
3
(
π
−
x
)
2
)
I
=
∫
π
0
(
π
−
x
)
3
cos
4
x
sin
2
x
(
π
2
−
3
π
x
)
+
3
x
2
)
.
.
.
.
.
.
.
.
.
.
.
(
2
)
Adding (1) and (2)
2
I
=
∫
π
0
(
π
−
x
)
3
+
x
3
(
π
2
−
3
π
x
+
3
x
2
)
sin
2
x
cos
4
x
d
x
2
I
=
∫
π
0
(
x
+
π
−
x
)
[
(
π
−
x
)
2
+
x
2
−
x
(
π
−
x
)
]
sin
2
x
cos
4
x
d
x
(
π
2
−
3
π
x
+
3
x
2
)
2
I
=
∫
π
0
π
(
x
2
+
π
2
−
2
π
x
+
x
2
+
π
x
+
x
2
)
sin
2
x
cos
4
x
d
x
(
π
2
−
3
π
x
+
3
x
2
)
2
I
=
π
∫
π
0
(
π
2
−
3
π
x
+
3
x
2
)
sin
2
x
cos
4
x
d
x
(
π
2
−
3
π
x
+
3
x
2
)
2
I
=
π
∫
π
0
sin
2
x
cos
2
x
d
x
2
I
=
π
2
∫
π
2
0
(
sin
2
x
cos
4
x
)
d
x
.
.
.
.
.
.
.
.
.
.
.
.
(
3
)
2
I
=
π
2
∫
π
2
0
(
sin
2
x
cos
4
x
)
d
x
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(
4
)
Adding (3) and (4)
4
I
=
2
π
∫
π
2
0
(
sin
2
x
cos
4
x
+
cos
2
x
sin
4
x
)
d
x
4
I
=
2
π
∫
π
2
0
(
sin
2
x
cos
2
x
)
=
2
π
4
∫
π
2
0
(
sin
2
2
x
)
d
x
4
I
=
π
2
∫
π
4
0
sin
2
2
x
d
x
.
.
.
.
.
.
.
.
.
(
5
)
4
I
=
π
2
∫
π
4
0
cos
2
2
x
d
x
.
.
.
.
.
.
.
.
.
.
(
6
)
Adding (5) and (6)
8
I
=
π
2
∫
π
4
0
d
x
I
=
π
2
32
32
π
2
I
+
298
=
299
Hence the correct answer is
299
Suggest Corrections
0
Similar questions
Q.
π
∫
0
x
3
cos
4
x
sin
2
x
(
π
2
−
3
π
x
+
3
x
2
)
d
x
is equal to
Q.
If
I
=
∫
π
0
x
2
sin
x
(
2
x
−
x
)
(
1
+
cos
2
x
)
d
x
then the value of
4
π
2
I
+
198
is
Q.
If
x
>
8
then the value if
x
2
−
4
x
−
32
is:
Q.
If
x
i
>
0
,
i
=
1
,
2
,
.
.
.
.
,
50
a
n
d
x
1
+
x
2
+
.
.
.
+
x
50
=
50
then the minimum value of
1
x
1
+
1
x
2
+
.
.
.
+
1
x
50
equals to
Q.
If
2
2
x
−
y
=
32
and
2
x
+
y
=
16
, then
x
2
+
y
2
is equal to
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Explore more
Product Rule of Differentiation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app