wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=π0x2sin2xcos4xx23πx+3x2dx then the value of 32π2I+298 is equal

Open in App
Solution

Given : I=π0x3cos4xsin2xdxπ23πx+3x2dx...........(1)
a0f(x)dx=abf(ax)dxI=π0(πx)3cos4(πx)sin2(πx)(π23π(πx)+3(πx)2)I=π0(πx)3cos4xsin2x(π23πx)+3x2)...........(2)
Adding (1) and (2)
2I=π0(πx)3+x3(π23πx+3x2)sin2xcos4xdx2I=π0(x+πx)[(πx)2+x2x(πx)]sin2xcos4xdx(π23πx+3x2)2I=π0π(x2+π22πx+x2+πx+x2)sin2xcos4xdx(π23πx+3x2)2I=ππ0(π23πx+3x2)sin2xcos4xdx(π23πx+3x2)2I=ππ0sin2xcos2xdx2I=π2π20(sin2xcos4x)dx............(3)2I=π2π20(sin2xcos4x)dx.................(4)
Adding (3) and (4)
4I=2ππ20(sin2xcos4x+cos2xsin4x)dx4I=2ππ20(sin2xcos2x)=2π4π20(sin22x)dx4I=π2π40sin22xdx.........(5)4I=π2π40cos22xdx..........(6)
Adding (5) and (6)
8I=π2π40dxI=π23232π2I+298=299
Hence the correct answer is 299


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon