wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=π0x2sinx(2xx)(1+cos2x)dx then the value of 4π2I+198 is

Open in App
Solution

I=π0x2sinx(2xx)(1+cos2x)dx=π0xsinx(1+cos2x)dx
Using baf(x)dx=baf(a+bx)dx
I=π0(πx)sin(πx)(1+cos2(πx))dx=π0(πx)sinx(1+cos2x)dx2I=π0πsinx(1+cos2x)dx
Substituting t=cosxdt=sinxdx
2I=π111(1+t2)dt=π[tan1t]11=π22
Therefore,
4π2I+198=4π2.π24+198=199

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon