wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=dx2sinx+secx=1Alog|cosec(x+π4)cot(x+π4)|+1B(sinx+cosx)+c,then A+B is

Open in App
Solution

I=dx2sinx+secx=cosxdx2sinxcosx+1I=122cosxdx(sinx+cosx)2I=12cosx+sinx(sinx+cosx)2dx+12cosxsinx(sinx+cosx)2dx
I=121(sinx+cosx)dx+12cosxsinx(sinx+cosx)2dx
Put (sinx+cosx)=t(cosxsinx)dx=dt
I=12⎜ ⎜ ⎜ ⎜12×1sin(x+π4)dx+dtt2⎟ ⎟ ⎟ ⎟
I=12(12×cosec(x+π4)dx1sinx+cosx)
I=122logcosec(x+π4)cot(x+π4)12(sinx+cosx)+c
A=8,B=2A+B=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon