wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=dx(2ax+x2)32, then I is equal to

A
x+a2ax+x2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1ax+a2ax+x2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1a2x+a2ax+x2+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1a3x+a2ax+x3+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1a2x+a2ax+x2+c

We have,


I=dx(2ax+x2)3/2


I=dx((x+a)2a2)3/2



Let t=x+a


dt=dx


I=dt(t2a2)3/2



Put t=asec(p)


dtdp=asec(p)tan(p)


dt=asec(p)tan(p)dp



Therefore,


I=asec(p)tan(p)(a2sec2pa2)3/2dp


I=asec(p)tan(p)a3(sec2p1)3/2dp


I=1a2sec(p)tan(p)(tan2p)3/2dp


I=1a2sec(p)(tan2p)dp


I=1a21cospsin2pcos2pdp


I=1a2cospsin2pdp



Let m=sinp


dm=cospdp



Therefore,


I=1a21m2dm


I=1a2(1m)+C



On putting all values, we get


I=1a2(1sinp)+C


I=1a2⎜ ⎜ ⎜ ⎜1sin(sec1(ta))⎟ ⎟ ⎟ ⎟+C


I=1a2⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜1at2a21t⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟+C


I=1a3⎜ ⎜ ⎜ ⎜ ⎜ ⎜tt2a21⎟ ⎟ ⎟ ⎟ ⎟ ⎟+C


I=1a3⎜ ⎜ ⎜ ⎜ ⎜ ⎜x+a(x+a)2a21⎟ ⎟ ⎟ ⎟ ⎟ ⎟+C


I=1a2⎜ ⎜x+a(x+a)2a2⎟ ⎟+C


I=1a2(x+ax2+2ax)+C



Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon