If I=∫dx(2ax+x2)32, then I is equal to
We have,
I=∫dx(2ax+x2)3/2
I=∫dx((x+a)2−a2)3/2
Let t=x+a
dt=dx
I=∫dt(t2−a2)3/2
Put t=asec(p)
dtdp=asec(p)tan(p)
dt=asec(p)tan(p)dp
Therefore,
I=∫asec(p)tan(p)(a2sec2p−a2)3/2dp
I=∫asec(p)tan(p)a3(sec2p−1)3/2dp
I=1a2∫sec(p)tan(p)(tan2p)3/2dp
I=1a2∫sec(p)(tan2p)dp
I=1a2∫1cospsin2pcos2pdp
I=1a2∫cospsin2pdp
Let m=sinp
dm=cospdp
Therefore,
I=1a2∫1m2dm
I=1a2(−1m)+C
On putting all values, we get
I=−1a2(1sinp)+C
I=−1a2⎛⎜ ⎜ ⎜ ⎜⎝1sin(sec−1(ta))⎞⎟ ⎟ ⎟ ⎟⎠+C
I=−1a2⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝1a√t2a2−1t⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠+C
I=−1a3⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝t√t2a2−1⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠+C
I=−1a3⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝x+a√(x+a)2a2−1⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠+C
I=−1a2⎛⎜ ⎜⎝x+a√(x+a)2−a2⎞⎟ ⎟⎠+C
I=−1a2(x+a√x2+2ax)+C
Hence, this is the answer.