If I=2π∫0x1+tan2nxdx,n∈N; then which of the folllowing statements is/are true
A
I=π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
I=π24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a∫0f(x)dx=a∫0f(a−x)dxcan be used to evaluate it
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Integrand is an odd function
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is DIntegrand is an odd function I=2π∫0x1+tan2nxdx⇒I=2π∫0xcos2nxsin2nx+cos2nxdx⋯(i)⇒I=2π∫0(2π−x)cos2nxsin2nx+cos2nxdx⋯(ii)
Adding (i) and (ii) 2I=2π2π∫0cos2nxsin2nx+cos2nxdx ⇒I=2ππ∫0cos2nxsin2nx+cos2nxdx⎧⎪⎨⎪⎩∵2a∫0f(x)dx=2a∫0f(x)dx, when f(x)=f(2a−x)⎫⎪⎬⎪⎭
Again using the same property on I ⇒I=4ππ/2∫0cos2nxsin2nx+cos2nxdx⋯(iii)⎡⎢⎣usingb∫af(x)dx=∫baf(a+b−x)dx⎤⎥⎦⇒I=4ππ/2∫0sin2nxsin2nx+cos2nxdx⋯(iv)
Adding (iii) and (iv) ⇒2I=4π⋅π2⇒I=π2