I=π∫0x2sin2xsin(π2cosx) dx2x−π
⇒I=−π∫0(π−x)2sin2xsin(π2cosx) dx2x−π
Now, add both equations
2I=π∫0πsin2xsin(π2cosx)dx
⇒2I=2ππ∫0sinxcosxsin(π2cosx) dx
Assume π2cosx=t⇒−π2sinx dx=dt
⇒I=−π2∫π2−4tπsint dt⇒I=4ππ2∫−π2tsint dt⇒I=8π[−tcost+sint]π20⇒I=8π
Hence, π2×I=4