wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If I=π0x2sin2xsin(π2cosx)dx2xπ, then the value of π2I is

Open in App
Solution

I=π0x2sin2xsin(π2cosx) dx2xπ
I=π0(πx)2sin2xsin(π2cosx) dx2xπ

Now, add both equations
2I=π0πsin2xsin(π2cosx)dx
2I=2ππ0sinxcosxsin(π2cosx) dx
Assume π2cosx=tπ2sinx dx=dt

I=π2π24tπsint dtI=4ππ2π2tsint dtI=8π[tcost+sint]π20I=8π

Hence, π2×I=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon